Files
litestream/replica.go
2021-07-18 08:45:49 -06:00

1370 lines
37 KiB
Go

package litestream
import (
"context"
"fmt"
"hash/crc64"
"io"
"io/ioutil"
"log"
"math"
"os"
"path/filepath"
"sort"
"sync"
"time"
"github.com/benbjohnson/litestream/internal"
"github.com/pierrec/lz4/v4"
"github.com/prometheus/client_golang/prometheus"
"github.com/prometheus/client_golang/prometheus/promauto"
"golang.org/x/sync/errgroup"
)
// Default replica settings.
const (
DefaultSyncInterval = 1 * time.Second
DefaultRetention = 24 * time.Hour
DefaultRetentionCheckInterval = 1 * time.Hour
)
// Replica connects a database to a replication destination via a ReplicaClient.
// The replica manages periodic synchronization and maintaining the current
// replica position.
type Replica struct {
db *DB
name string
mu sync.RWMutex
pos Pos // current replicated position
muf sync.Mutex
f *os.File // long-running file descriptor to avoid non-OFD lock issues
wg sync.WaitGroup
cancel func()
// Client used to connect to the remote replica.
Client ReplicaClient
// Time between syncs with the shadow WAL.
SyncInterval time.Duration
// Frequency to create new snapshots.
SnapshotInterval time.Duration
// Time to keep snapshots and related WAL files.
// Database is snapshotted after interval, if needed, and older WAL files are discarded.
Retention time.Duration
// Time between checks for retention.
RetentionCheckInterval time.Duration
// Time between validation checks.
ValidationInterval time.Duration
// If true, replica monitors database for changes automatically.
// Set to false if replica is being used synchronously (such as in tests).
MonitorEnabled bool
Logger *log.Logger
}
func NewReplica(db *DB, name string) *Replica {
r := &Replica{
db: db,
name: name,
cancel: func() {},
SyncInterval: DefaultSyncInterval,
Retention: DefaultRetention,
RetentionCheckInterval: DefaultRetentionCheckInterval,
MonitorEnabled: true,
}
prefix := fmt.Sprintf("%s: ", r.Name())
if db != nil {
prefix = fmt.Sprintf("%s(%s): ", db.Path(), r.Name())
}
r.Logger = log.New(LogWriter, prefix, LogFlags)
return r
}
// Name returns the name of the replica.
func (r *Replica) Name() string {
if r.name == "" && r.Client != nil {
return r.Client.Type()
}
return r.name
}
// DB returns a reference to the database the replica is attached to, if any.
func (r *Replica) DB() *DB { return r.db }
// Starts replicating in a background goroutine.
func (r *Replica) Start(ctx context.Context) error {
// Ignore if replica is being used sychronously.
if !r.MonitorEnabled {
return nil
}
// Stop previous replication.
r.Stop(false)
// Wrap context with cancelation.
ctx, r.cancel = context.WithCancel(ctx)
// Start goroutine to replicate data.
r.wg.Add(4)
go func() { defer r.wg.Done(); r.monitor(ctx) }()
go func() { defer r.wg.Done(); r.retainer(ctx) }()
go func() { defer r.wg.Done(); r.snapshotter(ctx) }()
go func() { defer r.wg.Done(); r.validator(ctx) }()
return nil
}
// Stop cancels any outstanding replication and blocks until finished.
//
// Performing a hard stop will close the DB file descriptor which could release
// locks on per-process locks. Hard stops should only be performed when
// stopping the entire process.
func (r *Replica) Stop(hard bool) (err error) {
r.cancel()
r.wg.Wait()
r.muf.Lock()
defer r.muf.Unlock()
if hard && r.f != nil {
if e := r.f.Close(); e != nil && err == nil {
err = e
}
}
return err
}
// Sync copies new WAL frames from the shadow WAL to the replica client.
func (r *Replica) Sync(ctx context.Context) (err error) {
// Clear last position if if an error occurs during sync.
defer func() {
if err != nil {
r.mu.Lock()
r.pos = Pos{}
r.mu.Unlock()
}
}()
// Find current position of database.
dpos := r.db.Pos()
if dpos.IsZero() {
return fmt.Errorf("no generation, waiting for data")
}
generation := dpos.Generation
// Create snapshot if no snapshots exist for generation.
snapshotN, err := r.snapshotN(generation)
if err != nil {
return err
} else if snapshotN == 0 {
if info, err := r.Snapshot(ctx); err != nil {
return err
} else if info.Generation != generation {
return fmt.Errorf("generation changed during snapshot, exiting sync")
}
snapshotN = 1
}
replicaSnapshotTotalGaugeVec.WithLabelValues(r.db.Path(), r.Name()).Set(float64(snapshotN))
// Determine position, if necessary.
if r.Pos().Generation != generation {
pos, err := r.calcPos(ctx, generation)
if err != nil {
return fmt.Errorf("cannot determine replica position: %s", err)
}
r.mu.Lock()
r.pos = pos
r.mu.Unlock()
}
// Read all WAL files since the last position.
if err = r.syncWAL(ctx); err != nil {
return err
}
return nil
}
func (r *Replica) syncWAL(ctx context.Context) (err error) {
pos := r.Pos()
itr, err := r.db.WALSegments(ctx, pos.Generation)
if err != nil {
return err
}
defer itr.Close()
// Group segments by index.
var segments [][]WALSegmentInfo
for itr.Next() {
info := itr.WALSegment()
if cmp, err := ComparePos(pos, info.Pos()); err != nil {
return fmt.Errorf("compare pos: %w", err)
} else if cmp == 1 {
continue // already processed, skip
}
// Start a new chunk if index has changed.
if len(segments) == 0 || segments[len(segments)-1][0].Index != info.Index {
segments = append(segments, []WALSegmentInfo{info})
continue
}
// Add segment to the end of the current index, if matching.
segments[len(segments)-1] = append(segments[len(segments)-1], info)
}
// Write out segments to replica by index so they can be combined.
for i := range segments {
if err := r.writeIndexSegments(ctx, segments[i]); err != nil {
return fmt.Errorf("write index segments: index=%d err=%w", segments[i][0].Index, err)
}
}
return nil
}
func (r *Replica) writeIndexSegments(ctx context.Context, segments []WALSegmentInfo) (err error) {
assert(len(segments) > 0, "segments required for replication")
// First segment position must be equal to last replica position or
// the start of the next index.
if pos := r.Pos(); pos != segments[0].Pos() {
nextIndexPos := pos.Truncate()
nextIndexPos.Index++
if nextIndexPos != segments[0].Pos() {
return fmt.Errorf("replica skipped position: replica=%s initial=%s", pos, segments[0].Pos())
}
}
pos := segments[0].Pos()
initialPos := pos
// Copy shadow WAL to client write via io.Pipe().
pr, pw := io.Pipe()
defer func() { _ = pw.CloseWithError(err) }()
// Copy through pipe into client from the starting position.
var g errgroup.Group
g.Go(func() error {
_, err := r.Client.WriteWALSegment(ctx, initialPos, pr)
return err
})
// Wrap writer to LZ4 compress.
zw := lz4.NewWriter(pw)
// Write each segment out to the replica.
for _, info := range segments {
if err := func() error {
// Ensure segments are in order and no bytes are skipped.
if pos != info.Pos() {
return fmt.Errorf("non-contiguous segment: expected=%s current=%s", pos, info.Pos())
}
rc, err := r.db.WALSegmentReader(ctx, info.Pos())
if err != nil {
return err
}
defer rc.Close()
n, err := io.Copy(zw, lz4.NewReader(rc))
if err != nil {
return err
} else if err := rc.Close(); err != nil {
return err
}
// Track last position written.
pos = info.Pos()
pos.Offset += n
return nil
}(); err != nil {
return fmt.Errorf("wal segment: pos=%s err=%w", info.Pos(), err)
}
}
// Flush LZ4 writer, close pipe, and wait for write to finish.
if err := zw.Close(); err != nil {
return err
} else if err := pw.Close(); err != nil {
return err
} else if err := g.Wait(); err != nil {
return err
}
// Save last replicated position.
r.mu.Lock()
r.pos = pos
r.mu.Unlock()
replicaWALBytesCounterVec.WithLabelValues(r.db.Path(), r.Name()).Add(float64(pos.Offset - initialPos.Offset))
// Track total WAL bytes written to replica client.
replicaWALIndexGaugeVec.WithLabelValues(r.db.Path(), r.Name()).Set(float64(pos.Index))
replicaWALOffsetGaugeVec.WithLabelValues(r.db.Path(), r.Name()).Set(float64(pos.Offset))
r.Logger.Printf("wal segment written: %s sz=%d", initialPos, pos.Offset-initialPos.Offset)
return nil
}
// snapshotN returns the number of snapshots for a generation.
func (r *Replica) snapshotN(generation string) (int, error) {
itr, err := r.Client.Snapshots(context.Background(), generation)
if err != nil {
return 0, err
}
defer itr.Close()
var n int
for itr.Next() {
n++
}
return n, itr.Close()
}
// calcPos returns the last position for the given generation.
func (r *Replica) calcPos(ctx context.Context, generation string) (pos Pos, err error) {
// Fetch last snapshot. Return error if no snapshots exist.
snapshot, err := r.maxSnapshot(ctx, generation)
if err != nil {
return pos, fmt.Errorf("max snapshot: %w", err)
} else if snapshot == nil {
return pos, fmt.Errorf("no snapshot available: generation=%s", generation)
}
// Determine last WAL segment available. Use snapshot if none exist.
segment, err := r.maxWALSegment(ctx, generation)
if err != nil {
return pos, fmt.Errorf("max wal segment: %w", err)
} else if segment == nil {
return Pos{Generation: snapshot.Generation, Index: snapshot.Index}, nil
}
// Read segment to determine size to add to offset.
rd, err := r.Client.WALSegmentReader(ctx, segment.Pos())
if err != nil {
return pos, fmt.Errorf("wal segment reader: %w", err)
}
defer rd.Close()
n, err := io.Copy(ioutil.Discard, lz4.NewReader(rd))
if err != nil {
return pos, err
}
// Return the position at the end of the last WAL segment.
return Pos{
Generation: segment.Generation,
Index: segment.Index,
Offset: segment.Offset + n,
}, nil
}
// maxSnapshot returns the last snapshot in a generation.
func (r *Replica) maxSnapshot(ctx context.Context, generation string) (*SnapshotInfo, error) {
itr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return nil, err
}
defer itr.Close()
var max *SnapshotInfo
for itr.Next() {
if info := itr.Snapshot(); max == nil || info.Index > max.Index {
max = &info
}
}
return max, itr.Close()
}
// maxWALSegment returns the highest WAL segment in a generation.
func (r *Replica) maxWALSegment(ctx context.Context, generation string) (*WALSegmentInfo, error) {
itr, err := r.Client.WALSegments(ctx, generation)
if err != nil {
return nil, err
}
defer itr.Close()
var max *WALSegmentInfo
for itr.Next() {
if info := itr.WALSegment(); max == nil || info.Index > max.Index || (info.Index == max.Index && info.Offset > max.Offset) {
max = &info
}
}
return max, itr.Close()
}
// Pos returns the current replicated position.
// Returns a zero value if the current position cannot be determined.
func (r *Replica) Pos() Pos {
r.mu.RLock()
defer r.mu.RUnlock()
return r.pos
}
// Snapshots returns a list of all snapshots across all generations.
func (r *Replica) Snapshots(ctx context.Context) ([]SnapshotInfo, error) {
generations, err := r.Client.Generations(ctx)
if err != nil {
return nil, fmt.Errorf("cannot fetch generations: %w", err)
}
var a []SnapshotInfo
for _, generation := range generations {
if err := func() error {
itr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return err
}
defer itr.Close()
other, err := SliceSnapshotIterator(itr)
if err != nil {
return err
}
a = append(a, other...)
return itr.Close()
}(); err != nil {
return a, err
}
}
sort.Sort(SnapshotInfoSlice(a))
return a, nil
}
// Snapshot copies the entire database to the replica path.
func (r *Replica) Snapshot(ctx context.Context) (info SnapshotInfo, err error) {
if r.db == nil || r.db.db == nil {
return info, fmt.Errorf("no database available")
}
r.muf.Lock()
defer r.muf.Unlock()
// Issue a passive checkpoint to flush any pages to disk before snapshotting.
if _, err := r.db.db.ExecContext(ctx, `PRAGMA wal_checkpoint(PASSIVE);`); err != nil {
return info, fmt.Errorf("pre-snapshot checkpoint: %w", err)
}
// Acquire a read lock on the database during snapshot to prevent checkpoints.
tx, err := r.db.db.Begin()
if err != nil {
return info, err
} else if _, err := tx.ExecContext(ctx, `SELECT COUNT(1) FROM _litestream_seq;`); err != nil {
_ = tx.Rollback()
return info, err
}
defer func() { _ = tx.Rollback() }()
// Obtain current position.
pos := r.db.Pos()
if pos.IsZero() {
return info, ErrNoGeneration
}
// Open db file descriptor, if not already open, & position at beginning.
if r.f == nil {
if r.f, err = os.Open(r.db.Path()); err != nil {
return info, err
}
}
if _, err := r.f.Seek(0, io.SeekStart); err != nil {
return info, err
}
// Use a pipe to convert the LZ4 writer to a reader.
pr, pw := io.Pipe()
// Copy the database file to the LZ4 writer in a separate goroutine.
var g errgroup.Group
g.Go(func() error {
zr := lz4.NewWriter(pw)
defer zr.Close()
if _, err := io.Copy(zr, r.f); err != nil {
pw.CloseWithError(err)
return err
} else if err := zr.Close(); err != nil {
pw.CloseWithError(err)
return err
}
return pw.Close()
})
// Delegate write to client & wait for writer goroutine to finish.
if info, err = r.Client.WriteSnapshot(ctx, pos.Generation, pos.Index, pr); err != nil {
return info, err
} else if err := g.Wait(); err != nil {
return info, err
}
log.Printf("snapshot written %s/%08x", pos.Generation, pos.Index)
return info, nil
}
// EnforceRetention forces a new snapshot once the retention interval has passed.
// Older snapshots and WAL files are then removed.
func (r *Replica) EnforceRetention(ctx context.Context) (err error) {
// Obtain list of snapshots that are within the retention period.
snapshots, err := r.Snapshots(ctx)
if err != nil {
return fmt.Errorf("snapshots: %w", err)
}
retained := FilterSnapshotsAfter(snapshots, time.Now().Add(-r.Retention))
// If no retained snapshots exist, create a new snapshot.
if len(retained) == 0 {
snapshot, err := r.Snapshot(ctx)
if err != nil {
return fmt.Errorf("snapshot: %w", err)
}
retained = append(retained, snapshot)
}
// Loop over generations and delete unretained snapshots & WAL files.
generations, err := r.Client.Generations(ctx)
if err != nil {
return fmt.Errorf("generations: %w", err)
}
for _, generation := range generations {
// Find earliest retained snapshot for this generation.
snapshot := FindMinSnapshotByGeneration(retained, generation)
// Delete entire generation if no snapshots are being retained.
if snapshot == nil {
if err := r.Client.DeleteGeneration(ctx, generation); err != nil {
return fmt.Errorf("delete generation: %w", err)
}
continue
}
// Otherwise remove all earlier snapshots & WAL segments.
if err := r.deleteSnapshotsBeforeIndex(ctx, generation, snapshot.Index); err != nil {
return fmt.Errorf("delete snapshots before index: %w", err)
} else if err := r.deleteWALSegmentsBeforeIndex(ctx, generation, snapshot.Index); err != nil {
return fmt.Errorf("delete wal segments before index: %w", err)
}
}
return nil
}
func (r *Replica) deleteSnapshotsBeforeIndex(ctx context.Context, generation string, index int) error {
itr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return fmt.Errorf("fetch snapshots: %w", err)
}
defer itr.Close()
for itr.Next() {
info := itr.Snapshot()
if info.Index >= index {
continue
}
if err := r.Client.DeleteSnapshot(ctx, info.Generation, info.Index); err != nil {
return fmt.Errorf("delete snapshot %s/%08x: %w", info.Generation, info.Index, err)
}
r.Logger.Printf("snapshot deleted %s/%08x", generation, index)
}
return itr.Close()
}
func (r *Replica) deleteWALSegmentsBeforeIndex(ctx context.Context, generation string, index int) error {
itr, err := r.Client.WALSegments(ctx, generation)
if err != nil {
return fmt.Errorf("fetch wal segments: %w", err)
}
defer itr.Close()
var a []Pos
for itr.Next() {
info := itr.WALSegment()
if info.Index >= index {
continue
}
a = append(a, info.Pos())
}
if err := itr.Close(); err != nil {
return err
}
if len(a) == 0 {
return nil
}
if err := r.Client.DeleteWALSegments(ctx, a); err != nil {
return fmt.Errorf("delete wal segments: %w", err)
}
for _, pos := range a {
r.Logger.Printf("wal segmented deleted: %s", pos)
}
return nil
}
// monitor runs in a separate goroutine and continuously replicates the DB.
func (r *Replica) monitor(ctx context.Context) {
ticker := time.NewTicker(r.SyncInterval)
defer ticker.Stop()
// Continuously check for new data to replicate.
ch := make(chan struct{})
close(ch)
var notify <-chan struct{} = ch
for initial := true; ; initial = false {
// Enforce a minimum time between synchronization.
if !initial {
select {
case <-ctx.Done():
return
case <-ticker.C:
}
}
// Wait for changes to the database.
select {
case <-ctx.Done():
return
case <-notify:
}
// Fetch new notify channel before replicating data.
notify = r.db.Notify()
// Synchronize the shadow wal into the replication directory.
if err := r.Sync(ctx); err != nil {
r.Logger.Printf("monitor error: %s", err)
continue
}
}
}
// retainer runs in a separate goroutine and handles retention.
func (r *Replica) retainer(ctx context.Context) {
// Disable retention enforcement if retention period is non-positive.
if r.Retention <= 0 {
return
}
// Ensure check interval is not longer than retention period.
checkInterval := r.RetentionCheckInterval
if checkInterval > r.Retention {
checkInterval = r.Retention
}
ticker := time.NewTicker(checkInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
if err := r.EnforceRetention(ctx); err != nil {
r.Logger.Printf("retainer error: %s", err)
continue
}
}
}
}
// snapshotter runs in a separate goroutine and handles snapshotting.
func (r *Replica) snapshotter(ctx context.Context) {
if r.SnapshotInterval <= 0 {
return
}
ticker := time.NewTicker(r.SnapshotInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
if _, err := r.Snapshot(ctx); err != nil && err != ErrNoGeneration {
r.Logger.Printf("snapshotter error: %s", err)
continue
}
}
}
}
// validator runs in a separate goroutine and handles periodic validation.
func (r *Replica) validator(ctx context.Context) {
// Initialize counters since validation occurs infrequently.
for _, status := range []string{"ok", "error"} {
replicaValidationTotalCounterVec.WithLabelValues(r.db.Path(), r.Name(), status).Add(0)
}
// Exit validation if interval is not set.
if r.ValidationInterval <= 0 {
return
}
ticker := time.NewTicker(r.ValidationInterval)
defer ticker.Stop()
for {
select {
case <-ctx.Done():
return
case <-ticker.C:
if err := r.Validate(ctx); err != nil {
r.Logger.Printf("validation error: %s", err)
continue
}
}
}
}
// Validate restores the most recent data from a replica and validates
// that the resulting database matches the current database.
func (r *Replica) Validate(ctx context.Context) error {
db := r.DB()
// Restore replica to a temporary directory.
tmpdir, err := ioutil.TempDir("", "*-litestream")
if err != nil {
return err
}
defer os.RemoveAll(tmpdir)
// Compute checksum of primary database under lock. This prevents a
// sync from occurring and the database will not be written.
chksum0, pos, err := db.CRC64(ctx)
if err != nil {
return fmt.Errorf("cannot compute checksum: %w", err)
}
// Wait until replica catches up to position.
if err := r.waitForReplica(ctx, pos); err != nil {
return fmt.Errorf("cannot wait for replica: %w", err)
}
restorePath := filepath.Join(tmpdir, "replica")
if err := r.Restore(ctx, RestoreOptions{
OutputPath: restorePath,
ReplicaName: r.Name(),
Generation: pos.Generation,
Index: pos.Index - 1,
Logger: log.New(os.Stderr, "", 0),
}); err != nil {
return fmt.Errorf("cannot restore: %w", err)
}
// Open file handle for restored database.
// NOTE: This open is ok as the restored database is not managed by litestream.
f, err := os.Open(restorePath)
if err != nil {
return err
}
defer f.Close()
// Read entire file into checksum.
h := crc64.New(crc64.MakeTable(crc64.ISO))
if _, err := io.Copy(h, f); err != nil {
return err
}
chksum1 := h.Sum64()
status := "ok"
mismatch := chksum0 != chksum1
if mismatch {
status = "mismatch"
}
r.Logger.Printf("validator: status=%s db=%016x replica=%016x pos=%s", status, chksum0, chksum1, pos)
// Validate checksums match.
if mismatch {
replicaValidationTotalCounterVec.WithLabelValues(r.db.Path(), r.Name(), "error").Inc()
return ErrChecksumMismatch
}
replicaValidationTotalCounterVec.WithLabelValues(r.db.Path(), r.Name(), "ok").Inc()
if err := os.RemoveAll(tmpdir); err != nil {
return fmt.Errorf("cannot remove temporary validation directory: %w", err)
}
return nil
}
// waitForReplica blocks until replica reaches at least the given position.
func (r *Replica) waitForReplica(ctx context.Context, pos Pos) error {
ticker := time.NewTicker(500 * time.Millisecond)
defer ticker.Stop()
timer := time.NewTicker(10 * time.Second)
defer ticker.Stop()
once := make(chan struct{}, 1)
once <- struct{}{}
for {
select {
case <-ctx.Done():
return ctx.Err()
case <-timer.C:
return fmt.Errorf("replica wait exceeded timeout")
case <-ticker.C:
case <-once: // immediate on first check
}
// Obtain current position of replica, check if past target position.
curr := r.Pos()
if curr.IsZero() {
r.Logger.Printf("validator: no replica position available")
continue
}
// Exit if the generation has changed while waiting as there will be
// no further progress on the old generation.
if curr.Generation != pos.Generation {
return fmt.Errorf("generation changed")
}
ready := true
if curr.Index < pos.Index {
ready = false
} else if curr.Index == pos.Index && curr.Offset < pos.Offset {
ready = false
}
// If not ready, restart loop.
if !ready {
continue
}
// Current position at or after target position.
return nil
}
}
// GenerationCreatedAt returns the earliest creation time of any snapshot.
// Returns zero time if no snapshots exist.
func (r *Replica) GenerationCreatedAt(ctx context.Context, generation string) (time.Time, error) {
var min time.Time
itr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return min, err
}
defer itr.Close()
for itr.Next() {
if info := itr.Snapshot(); min.IsZero() || info.CreatedAt.Before(min) {
min = info.CreatedAt
}
}
return min, itr.Close()
}
// GenerationTimeBounds returns the creation time & last updated time of a generation.
// Returns zero time if no snapshots or WAL segments exist.
func (r *Replica) GenerationTimeBounds(ctx context.Context, generation string) (createdAt, updatedAt time.Time, err error) {
// Iterate over snapshots.
sitr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return createdAt, updatedAt, err
}
defer sitr.Close()
for sitr.Next() {
info := sitr.Snapshot()
if createdAt.IsZero() || info.CreatedAt.Before(createdAt) {
createdAt = info.CreatedAt
}
if updatedAt.IsZero() || info.CreatedAt.After(updatedAt) {
updatedAt = info.CreatedAt
}
}
if err := sitr.Close(); err != nil {
return createdAt, updatedAt, err
}
// Iterate over WAL segments.
witr, err := r.Client.WALSegments(ctx, generation)
if err != nil {
return createdAt, updatedAt, err
}
defer witr.Close()
for witr.Next() {
info := witr.WALSegment()
if createdAt.IsZero() || info.CreatedAt.Before(createdAt) {
createdAt = info.CreatedAt
}
if updatedAt.IsZero() || info.CreatedAt.After(updatedAt) {
updatedAt = info.CreatedAt
}
}
if err := witr.Close(); err != nil {
return createdAt, updatedAt, err
}
return createdAt, updatedAt, nil
}
// CalcRestoreTarget returns a generation to restore from.
func (r *Replica) CalcRestoreTarget(ctx context.Context, opt RestoreOptions) (generation string, updatedAt time.Time, err error) {
var target struct {
generation string
updatedAt time.Time
}
generations, err := r.Client.Generations(ctx)
if err != nil {
return "", time.Time{}, fmt.Errorf("cannot fetch generations: %w", err)
}
// Search generations for one that contains the requested timestamp.
for _, generation := range generations {
// Skip generation if it does not match filter.
if opt.Generation != "" && generation != opt.Generation {
continue
}
// Determine the time bounds for the generation.
createdAt, updatedAt, err := r.GenerationTimeBounds(ctx, generation)
if err != nil {
return "", time.Time{}, fmt.Errorf("generation created at: %w", err)
}
// Skip if it does not contain timestamp.
if !opt.Timestamp.IsZero() {
if opt.Timestamp.Before(createdAt) || opt.Timestamp.After(updatedAt) {
continue
}
}
// Use the latest replica if we have multiple candidates.
if !updatedAt.After(target.updatedAt) {
continue
}
target.generation = generation
target.updatedAt = updatedAt
}
return target.generation, target.updatedAt, nil
}
// Replica restores the database from a replica based on the options given.
// This method will restore into opt.OutputPath, if specified, or into the
// DB's original database path. It can optionally restore from a specific
// replica or generation or it will automatically choose the best one. Finally,
// a timestamp can be specified to restore the database to a specific
// point-in-time.
func (r *Replica) Restore(ctx context.Context, opt RestoreOptions) (err error) {
// Validate options.
if opt.OutputPath == "" {
return fmt.Errorf("output path required")
} else if opt.Generation == "" && opt.Index != math.MaxInt32 {
return fmt.Errorf("must specify generation when restoring to index")
} else if opt.Index != math.MaxInt32 && !opt.Timestamp.IsZero() {
return fmt.Errorf("cannot specify index & timestamp to restore")
}
// Ensure logger exists.
logger := opt.Logger
if logger == nil {
logger = log.New(ioutil.Discard, "", 0)
}
logPrefix := r.Name()
if db := r.DB(); db != nil {
logPrefix = fmt.Sprintf("%s(%s)", db.Path(), r.Name())
}
// Ensure output path does not already exist.
if _, err := os.Stat(opt.OutputPath); err == nil {
return fmt.Errorf("cannot restore, output path already exists: %s", opt.OutputPath)
} else if err != nil && !os.IsNotExist(err) {
return err
}
// Find lastest snapshot that occurs before timestamp or index.
var minWALIndex int
if opt.Index < math.MaxInt32 {
if minWALIndex, err = r.SnapshotIndexByIndex(ctx, opt.Generation, opt.Index); err != nil {
return fmt.Errorf("cannot find snapshot index: %w", err)
}
} else {
if minWALIndex, err = r.SnapshotIndexAt(ctx, opt.Generation, opt.Timestamp); err != nil {
return fmt.Errorf("cannot find snapshot index by timestamp: %w", err)
}
}
// Compute list of offsets for each WAL index.
walSegmentMap, err := r.walSegmentMap(ctx, opt.Generation, opt.Index, opt.Timestamp)
if err != nil {
return fmt.Errorf("cannot find max wal index for restore: %w", err)
}
// Find the maximum WAL index that occurs before timestamp.
maxWALIndex := -1
for index := range walSegmentMap {
if index > maxWALIndex {
maxWALIndex = index
}
}
// Ensure that we found the specific index, if one was specified.
if opt.Index != math.MaxInt32 && opt.Index != opt.Index {
return fmt.Errorf("unable to locate index %d in generation %q, highest index was %d", opt.Index, opt.Generation, maxWALIndex)
}
// If no WAL files were found, mark this as a snapshot-only restore.
snapshotOnly := maxWALIndex == -1
// Initialize starting position.
pos := Pos{Generation: opt.Generation, Index: minWALIndex}
tmpPath := opt.OutputPath + ".tmp"
// Copy snapshot to output path.
logger.Printf("%s: restoring snapshot %s/%08x to %s", logPrefix, opt.Generation, minWALIndex, tmpPath)
if err := r.restoreSnapshot(ctx, pos.Generation, pos.Index, tmpPath); err != nil {
return fmt.Errorf("cannot restore snapshot: %w", err)
}
// If no WAL files available, move snapshot to final path & exit early.
if snapshotOnly {
logger.Printf("%s: snapshot only, finalizing database", logPrefix)
return os.Rename(tmpPath, opt.OutputPath)
}
// Begin processing WAL files.
logger.Printf("%s: restoring wal files: generation=%s index=[%08x,%08x]", logPrefix, opt.Generation, minWALIndex, maxWALIndex)
// Fill input channel with all WAL indexes to be loaded in order.
// Verify every index has at least one offset.
ch := make(chan int, maxWALIndex-minWALIndex+1)
for index := minWALIndex; index <= maxWALIndex; index++ {
if len(walSegmentMap[index]) == 0 {
return fmt.Errorf("missing WAL index: %s/%08x", opt.Generation, index)
}
ch <- index
}
close(ch)
// Track load state for each WAL.
var mu sync.Mutex
cond := sync.NewCond(&mu)
walStates := make([]walRestoreState, maxWALIndex-minWALIndex+1)
parallelism := opt.Parallelism
if parallelism < 1 {
parallelism = 1
}
// Download WAL files to disk in parallel.
g, ctx := errgroup.WithContext(ctx)
for i := 0; i < parallelism; i++ {
g.Go(func() error {
for {
select {
case <-ctx.Done():
cond.Broadcast()
return err
case index, ok := <-ch:
if !ok {
cond.Broadcast()
return nil
}
startTime := time.Now()
err := r.downloadWAL(ctx, opt.Generation, index, walSegmentMap[index], tmpPath)
if err != nil {
err = fmt.Errorf("cannot download wal %s/%08x: %w", opt.Generation, index, err)
}
// Mark index as ready-to-apply and notify applying code.
mu.Lock()
walStates[index-minWALIndex] = walRestoreState{ready: true, err: err}
mu.Unlock()
cond.Broadcast()
// Returning the error here will cancel the other goroutines.
if err != nil {
return err
}
logger.Printf("%s: downloaded wal %s/%08x elapsed=%s",
logPrefix, opt.Generation, index,
time.Since(startTime).String(),
)
}
}
})
}
// Apply WAL files in order as they are ready.
for index := minWALIndex; index <= maxWALIndex; index++ {
// Wait until next WAL file is ready to apply.
mu.Lock()
for !walStates[index-minWALIndex].ready {
if err := ctx.Err(); err != nil {
return err
}
cond.Wait()
}
if err := walStates[index-minWALIndex].err; err != nil {
return err
}
mu.Unlock()
// Apply WAL to database file.
startTime := time.Now()
if err = applyWAL(ctx, index, tmpPath); err != nil {
return fmt.Errorf("cannot apply wal: %w", err)
}
logger.Printf("%s: applied wal %s/%08x elapsed=%s",
logPrefix, opt.Generation, index,
time.Since(startTime).String(),
)
}
// Ensure all goroutines finish. All errors should have been handled during
// the processing of WAL files but this ensures that all processing is done.
if err := g.Wait(); err != nil {
return err
}
// Copy file to final location.
logger.Printf("%s: renaming database from temporary location", logPrefix)
if err := os.Rename(tmpPath, opt.OutputPath); err != nil {
return err
}
return nil
}
type walRestoreState struct {
ready bool
err error
}
// SnapshotIndexAt returns the highest index for a snapshot within a generation
// that occurs before timestamp. If timestamp is zero, returns the latest snapshot.
func (r *Replica) SnapshotIndexAt(ctx context.Context, generation string, timestamp time.Time) (int, error) {
itr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return 0, err
}
defer itr.Close()
snapshotIndex := -1
var max time.Time
for itr.Next() {
snapshot := itr.Snapshot()
if !timestamp.IsZero() && snapshot.CreatedAt.After(timestamp) {
continue // after timestamp, skip
}
// Use snapshot if it newer.
if max.IsZero() || snapshot.CreatedAt.After(max) {
snapshotIndex, max = snapshot.Index, snapshot.CreatedAt
}
}
if err := itr.Close(); err != nil {
return 0, err
} else if snapshotIndex == -1 {
return 0, ErrNoSnapshots
}
return snapshotIndex, nil
}
// SnapshotIndexbyIndex returns the highest index for a snapshot within a generation
// that occurs before a given index. If index is MaxInt32, returns the latest snapshot.
func (r *Replica) SnapshotIndexByIndex(ctx context.Context, generation string, index int) (int, error) {
itr, err := r.Client.Snapshots(ctx, generation)
if err != nil {
return 0, err
}
defer itr.Close()
snapshotIndex := -1
for itr.Next() {
snapshot := itr.Snapshot()
if index < math.MaxInt32 && snapshot.Index > index {
continue // after index, skip
}
// Use snapshot if it newer.
if snapshotIndex == -1 || snapshotIndex >= snapshotIndex {
snapshotIndex = snapshot.Index
}
}
if err := itr.Close(); err != nil {
return 0, err
} else if snapshotIndex == -1 {
return 0, ErrNoSnapshots
}
return snapshotIndex, nil
}
// walSegmentMap returns a map of WAL indices to their segments.
// Filters by a max timestamp or a max index.
func (r *Replica) walSegmentMap(ctx context.Context, generation string, maxIndex int, maxTimestamp time.Time) (map[int][]int64, error) {
itr, err := r.Client.WALSegments(ctx, generation)
if err != nil {
return nil, err
}
defer itr.Close()
m := make(map[int][]int64)
for itr.Next() {
info := itr.WALSegment()
// Exit if we go past the max timestamp or index.
if !maxTimestamp.IsZero() && info.CreatedAt.After(maxTimestamp) {
break // after max timestamp, skip
} else if info.Index > maxIndex {
break // after max index, skip
}
// Verify offsets are added in order.
offsets := m[info.Index]
if len(offsets) == 0 && info.Offset != 0 {
return nil, fmt.Errorf("missing initial wal segment: generation=%s index=%08x offset=%d", generation, info.Index, info.Offset)
} else if len(offsets) > 0 && offsets[len(offsets)-1] >= info.Offset {
return nil, fmt.Errorf("wal segments out of order: generation=%s index=%08x offsets=(%d,%d)", generation, info.Index, offsets[len(offsets)-1], info.Offset)
}
// Append to the end of the WAL file.
m[info.Index] = append(offsets, info.Offset)
}
return m, itr.Close()
}
// restoreSnapshot copies a snapshot from the replica to a file.
func (r *Replica) restoreSnapshot(ctx context.Context, generation string, index int, filename string) error {
// Determine the user/group & mode based on the DB, if available.
var fileInfo, dirInfo os.FileInfo
if db := r.DB(); db != nil {
fileInfo, dirInfo = db.fileInfo, db.dirInfo
}
if err := internal.MkdirAll(filepath.Dir(filename), dirInfo); err != nil {
return err
}
f, err := internal.CreateFile(filename, fileInfo)
if err != nil {
return err
}
defer f.Close()
rd, err := r.Client.SnapshotReader(ctx, generation, index)
if err != nil {
return err
}
defer rd.Close()
if _, err := io.Copy(f, lz4.NewReader(rd)); err != nil {
return err
} else if err := f.Sync(); err != nil {
return err
}
return f.Close()
}
// downloadWAL copies a WAL file from the replica to a local copy next to the DB.
// The WAL is later applied by applyWAL(). This function can be run in parallel
// to download multiple WAL files simultaneously.
func (r *Replica) downloadWAL(ctx context.Context, generation string, index int, offsets []int64, dbPath string) (err error) {
// Determine the user/group & mode based on the DB, if available.
var fileInfo os.FileInfo
if db := r.DB(); db != nil {
fileInfo = db.fileInfo
}
// Open readers for every segment in the WAL file, in order.
var readers []io.Reader
for _, offset := range offsets {
rd, err := r.Client.WALSegmentReader(ctx, Pos{Generation: generation, Index: index, Offset: offset})
if err != nil {
return err
}
defer rd.Close()
readers = append(readers, lz4.NewReader(rd))
}
// Open handle to destination WAL path.
f, err := internal.CreateFile(fmt.Sprintf("%s-%08x-wal", dbPath, index), fileInfo)
if err != nil {
return err
}
defer f.Close()
// Combine segments together and copy WAL to target path.
if _, err := io.Copy(f, io.MultiReader(readers...)); err != nil {
return err
} else if err := f.Close(); err != nil {
return err
}
return nil
}
// Replica metrics.
var (
replicaSnapshotTotalGaugeVec = promauto.NewGaugeVec(prometheus.GaugeOpts{
Namespace: "litestream",
Subsystem: "replica",
Name: "snapshot_total",
Help: "The current number of snapshots",
}, []string{"db", "name"})
replicaWALBytesCounterVec = promauto.NewCounterVec(prometheus.CounterOpts{
Namespace: "litestream",
Subsystem: "replica",
Name: "wal_bytes",
Help: "The number wal bytes written",
}, []string{"db", "name"})
replicaWALIndexGaugeVec = promauto.NewGaugeVec(prometheus.GaugeOpts{
Namespace: "litestream",
Subsystem: "replica",
Name: "wal_index",
Help: "The current WAL index",
}, []string{"db", "name"})
replicaWALOffsetGaugeVec = promauto.NewGaugeVec(prometheus.GaugeOpts{
Namespace: "litestream",
Subsystem: "replica",
Name: "wal_offset",
Help: "The current WAL offset",
}, []string{"db", "name"})
replicaValidationTotalCounterVec = promauto.NewCounterVec(prometheus.CounterOpts{
Namespace: "litestream",
Subsystem: "replica",
Name: "validation_total",
Help: "The number of validations performed",
}, []string{"db", "name", "status"})
)